

Rapport Final

Table des matières :

I - Analyse et conception

a)​Cahier des charges
b)​Organisation
c)​ Modèle conceptuel
d)​Présentation des tables
e)​Modèle relationnel
f)​ Requêtes de création de table

II - Documentation technique

a)​Guide d’utilisation
b)​Schéma de l’organisation des fichiers
c)​ Explication des requêtes difficiles

I - Analyse et conception

a)​Cahier des charges

Un établissement est venu nous voir car, chaque année, chaque directeur de spécialité crée
un fichier personnel dans lequel il gère les affectations enseignant-enseignement (il sait quel
enseignant enseigne quelle matière). Or le problème est qu’il n’y a pas de plateforme
commune dans laquelle chaque directeur de spécialité pourrait voir le service de ses
enseignants intervenant dans plusieurs spécialités. En effet, il est difficile pour le directeur
d’organiser les affectations sans savoir quand ses enseignants donnent cours dans les
autres spécialités. De plus, le directeur de formation, en charge d’une spécialité, doit
organiser la répartition des heures de cours en respectant les quotas imposés :

-​ Un enseignant doit faire au moins 384 heures par an
-​ Un enseignant chercheur doit faire minimum 192 heures par an
-​ Un a.t.e.r doit faire exactement 192 heures par an
-​ Un doctorant assistant doit faire minimum 64h par an
-​ Un vacataire doit faire au moins 96h par an

De plus, ces quotas sont donnés en “équivalent TD”. En effet, une heure de cours magistral
(CM) vaut 1,5 h de travaux pratiques (TD / TP) et un CTD vaut 1,25 h de travaux pratiques
(TD / TP).

Comme dit précédemment, à l’heure actuelle, chaque directeur planifie manuellement les
maquettes et le manque de centralisation rend la prise de décisions budgétaires difficile.

Cette application permettra de résoudre le problème de manque de centralisation en
organisant les 10 spécialités disponibles à Polytech. Elle permettra au directeur de chaque
spécialité une gestion plus adéquate des affectations enseignant-enseignement en pouvant
ajouter et affecter de manière simple un enseignant à une spécialité . De plus, le client
nous a demandé une visualisation des maquettes et des affectations. L’application permettra
donc au directeur de formation d’avoir une vision globale de toutes les unités
d’enseignement présentes dans sa spécialité ainsi que les modules (avec les quotas
horaires de ces modules) présents dans chacune de ces unités d’enseignement, tout ça au
même endroit.

L’application permettra à chaque directeur de formation d’avoir accès aux quotas horaires
des enseignants intervenant dans sa spécialité et permettra également à chaque enseignant

de voir son propre service. Chaque enseignant pourra facilement filtrer son service
prévisionnel par spécialité / type (cours magistral, travaux dirigés ou travaux pratiques)
/ semestre. Il pourra, en plus, avoir accès à son propre quota horaire. Cette application a
aussi pour but d’avoir une vision globale des coûts liés aux enseignants, à savoir combien
d’heures supplémentaires a besoin chaque spécialité afin d’aider la direction à prendre des
décisions budgétaires.

Pour affecter un enseignant à un module, il faudra que l’application demande d’abord à
l’utilisateur le nom de la spécialité, l’année et le semestre et, en fonction de ce choix, il devra
sélectionner le nom du ou des professeur(s) réalisant chaque module de cette spécialité (le
tout sous forme de listes). En effet, le nombre d’enseignants à sélectionner dépend du type
de cours donné : si c’est un CM il n’y a qu’un groupe (par défaut), si c’est un TD il y a
maximum deux groupes donc deux professeurs, et si c’est un TP il y a maximum trois
groupes donc maximum trois professeurs.

En outre, cette application permettra de :

Gérer les enseignants

●​ ajouter / modifier un enseignant
●​ stocker son statut (enseignant, enseignant chercheur, a.t.e.r, doctorant assistant ou

vacataire)
●​ Consulter les enseignants présents dans l’établissement en ayant une visualisation

détaillée des heures effectuées par chaque enseignant.​

Gérer les formations​

●​ 10 spécialités
●​ leurs unités d'enseignement (UE)
●​ leurs modules
●​ leurs types (CM, TD, TP, CTD)
●​ leurs volumes horaires prévus​

Affecter les enseignants à un/des module(s) ​

●​ lier un enseignant à un module
●​ indiquer le type de cours que le professeur donne (CM/TD/TP/CTD)​

Visualiser

●​ la maquette d'une spécialité

●​ les affectations des différents modules
●​ le service d’un enseignant (avec des filtres)
●​ le service global d’une spécialité

Périmètre

-​ On ne se penchera pas sur l’administration des droits, on considère que l’utilisateur
effectue ce qu’il est seulement autorisé à faire.

-​ Nous ne nous pencherons pas sur les études budgétaires en chiffres.

b)​Organisation :

Le projet se déroule sur 22h réparties ainsi :

-​ 4h pour l’analyse du projet, la répartition des tâches et l'élaboration du cahier des
charges.

-​ 18h sur la conception de l’application.
Pour la répartition du travail, mon binôme s’est occupé de la création de la base de données
ainsi que de son remplissage et je me suis occupé de coder les premières pages du site. À
la suite de cela, nous nous sommes répartis les différentes pages du site web: j’ai par
exemple codé la page de consultation des enseignants pendant que mon binôme a codé la
page de visualisation de la maquette.

c)​Modèle conceptuel :

Justification:

L’application demandée par le client doit permettre de gérer et d’élaborer les services
prévisionnels des enseignants. Avant tout, notre schéma conceptuel doit permettre de
représenter l’ensemble des éléments nécessaires au fonctionnement d’un établissement
comme Polytech, afin que l’application puisse gérer de manière cohérente les spécialités,
les unités d’enseignement, les modules et les services des enseignants. Pour cela, nous
avons choisi d’inclure les classes :

●​ Spécialité : elle nous permet d’enregistrer toutes les spécialités de Polytech
●​ UE : elle nous permet de savoir facilement de quelles unités d’enseignement est

composé une spécialité donnée
●​ Module : elle nous permet de savoir de quels enseignements est composé chaque

UE
●​ Enseignant : cette classe nous permet d'enregistrer tous les enseignants présents à

Polytech et nous permet également (comme demandé par le client) d’ajouter de
nouveaux enseignants

●​ Statut : Cette classe nous permet de connaître le statut d’un enseignant (enseignant,
enseignant chercheur, a.t.e.r, doctorant assistant ou vacataire), elle nous permet
aussi de connaître le quota horaire par statut; comme dit précédemment, chaque
statut ne doit pas remplir le même quota horaire.

En plus de ces quatre classes principales, il est nécessaire d’en rajouter afin de répondre
aux exigences du client :

L’application doit permettre aux enseignants de connaître précisément les détails de son
service, autrement dit un enseignant doit pouvoir avoir accès sans problème à son quota
horaire total selon différents filtres (il peut voir le service total dans chaque
formation/spécialité/ type/ semestre). Pour faire cela, nous avons créé une classe
association entre la table Enseignant et la table Module. Cette classe association a pour
attribut le type qui permettra à l'enseignant de filtrer par type (CM,TD,TP,CTD) et un nombre
d'heures qui comptera les heures données par cet enseignant. Pour afficher le quota horaire
total de chaque enseignant, nous utiliserons une requête php simple qui sommera toutes les
heures effectuées par l’enseignant. Pour ce qui est du filtrage selon la formation, il nous
suffira de sélectionner la spécialité voulue dans la table spécialité. Pour finir, pour le filtrage
selon le semestre, nous avons fait le choix d’ajouter une classe Semestre nous permettant
de choisir le numéro du semestre voulu.

Pour visualiser le service total d’un enseignant, il nous suffira de ne filtrer que par le numéro
de l’enseignant voulu et d’afficher la somme de toutes les heures qu’il a faites pour tous les
types de cours mélangés. Typiquement : heures totales= heures de CM + heures de TD +
heures de TP (⚠️ il faudra prendre en compte le fait qu’une heure de CM ou de TP se
donne en équivalent TD avec 1h de CM=1,5h de TD et 1h de CTD=1,25h de TD).

Le client nous a également demandé de pouvoir avoir un historique par année de ces
données, c’est pour cela que nous avons créé la classe Annee qui nous permettra de filtrer
les données par année voulue.

Enfin, pour visualiser la maquette d’une spécialité, il nous suffira d’afficher toutes les UE de
cette spécialité et tous les modules correspondant à chacune de ces UE.

Les cardinalités :

●​ Annee <-> Specialite (composition) : 1-1..*
Une année possède au moins une spécialité et une spécialité correspond à une
année.
“Composition” car une spécialité n’existe pas sans son année.

●​ Specialite <-> Semestre : 1-6
Une spécialité a six semestres mais un semestre ne correspond qu’à une spécialité.

●​ Semestre <-> UE: 1-*

Une UE ne fait référence qu'à un semestre mais un semestre contient plusieurs UE.

●​ UE <-> Module : 1-1..*
Un module ne peut être que dans une seule UE mais une UE est composée d’au
moins un module (sinon l’UE n’aurait pas lieu d’exister).

●​ Type <-> Module : 1-*
Cette table nous permet d’afficher la maquette d’une spécialité et donne le nombre
d’heures prévues en CM, TD, TP, CTD pour un module donné. Ainsi, un type fait
référence à plusieurs modules mais un module est caractérisé par un type.

●​ Enseignant <-> Module : 1..*-*
Un enseignant enseigne dans plusieurs modules et un module a un ou plusieurs
enseignant(s) (si aucun enseignant n’est affilié au module alors celui-ci ne peut être
assuré et donc ne peut exister).

●​ Statut <-> Enseignant : 1-1..*
Un enseignant possède un statut et un statut correspond à au moins un enseignant
(sinon ce statut n’a pas lieu d’exister).

d)​ Présentation des tables

Table
Année Nom Attribut Type Justification Exemple

Clé Primaire an Int
(>0 et <10000)

Année
correspondant à
la première du

cycle

2024
(pour 24/25)

Table
Spécialité Nom Attribut Type Justification Exemple

Clé Primaire numspe, an
Int
Int

(année)

Relation maître
esclave : une spé
n’existe pas sans

son année

14,2024

Attributs

nomspe string[100]
Un nom

caractérisant
chaque spécialité

“Ingénieur
Informatique,
Statistique et

Intelligence Artificielle”

regime string[10]
Alternance

ou
Continu

“Continu”

Table
Semestre Nom Attribut Type Justification Exemple

Clé Primaire idsem Int identifiant du
semestre 5

Attributs

numsem string numéro du
semestre S5

numspe,an
Int
Int

(année)

Clé étrangère de
la table spécialité,

1 idsem = 1
spé,an

14,2024

Table
Module Nom Attribut Type Justification Exemple

Clé Primaire nummodule Int

Un numéro
unique pour
différencier

chaque module
pouvant avoir le

même nom
(ex : info en MECA

15

Table
UE Nom Attribut Type Justification Exemple

Clé Primaire numue Int Numéro unique
pour chaque UE 7

Attributs

nomue string[100] Le nom de l’UE
pour l’utilisateur

“Algorithme et
Programmation”

volue Int

Nombre d’heures
correspondant à
la somme des

volmodules

160

et en GBA)

Attributs

nommodule string[100]
Le nom du

module pour
l’utilisateur

“Algorithme et
Programmation”

volmodule Int Nombre d’heures
du module 160

nombrgrp Int
(>0 et <4)

Nombre de
groupes qui

dépendent du
type de cours

3

Table
Type Nom Attribut Type Justification Exemple

Clé Primaire type string[2]
Si le cours est un

CM, un TD, un
TP ou un CTD

“TD”

Attribut nombreh Int (en heures)
(>0 et <1000)

Le nombre
d’heures

prévisionnel
50h

Table
Enseignant Nom Attribut Type Justification Exemple

Clé Primaire idens Int
(>0 et <100000)

Un numéro
unique pour
différencier

chaque
enseignant

1

Attributs

nomens string[100] Le nom de famille
de l’enseignant “xxxx”

prenomens string[100] Le prénom de
l’enseignant “xxxxx”

Table
Statut Nom Attribut Type Justification Exemple

Clé Primaire nom string[100] Définit le statut
de l’enseignant “Enseignant chercheur”

Attribut Quota Int (en heures)
(>0 et <1000)

Le nombre
d’heures max/min
qui change selon

le statut

192 h

Table
Enseigne Nom Attribut Type Justification Exemple

Clé Primaire idens,
nummodule

Int
(>0 et <100000)

Définit le statut
de l’enseignant 9 16

Attributs

nombreh Int (en heures)
(>0 et <1000)

Le nombre
d’heures que
l’enseignant

dispense

24

numerogrp int
(>0 et <4)

le numéro du
groupe de TD et

TP
2

Nous avons optimisé notre schéma en ne mettant que les relations nécessaires.
C’est pourquoi il faudra faire une jointure entre module et UE puis specialite pour avoir
accès à tous les modules de celle-ci. Nous avons réalisé ce schéma conceptuel à l’aide du
logiciel modelio. L’attribut statut précise si l’enseignant est chercheur, vacataire ou doctorant.
L’attribut volue n’est que la somme de tous les volmodule, soit le volume horaire total d’une
UE. L’attribut regime précise si la formation est continue ou en alternance.

e)​ Modèle relationnel :

Specialite (numspe, #an, nomspe, regime)
Enseignant(idens, nomens, prenomens, #nom)
Statut(nom, quota)
UE (numue, nomue, volue, #idsem)
Module (nummodule, #type, nommodule, volmodule, nbrgrp, #numue)
Type (type)
Enseigne (#idens,#nummodule, nbheure, numerogroupe)
Semestre (idsem, numsem, #numspe, #an)
Annee(an)

Justification :

La clé de l’UE est composée du numéro du semestre et d’un numéro qui lui est propre.
La classe Specialite est régie par une composition, elle n’existe pas sans son année. Dans
la classe Enseigne, l’attribut nbheure correspond au volume des modules qui seront affectés
aux enseignants.

f)​ Requêtes de création de table

À l’aide du modèle relationnel, nous pouvons écrire les requêtes de création de table sous
Postgres. Ces commandes sont écrites avec la syntaxe spécifique à Postgres. Ces requêtes
découlent du modèle relationnel.

CREATE TABLE annee(
an INTEGER,
PRIMARY KEY(an));

“an” est la clé primaire de la table Annee. En effet, une année est unique et donc cela peut
bien être une clé primaire.

CREATE TABLE specialite(
numspe INTEGER,
nomspe VARCHAR(100),
regime VARCHAR(10),
an INTEGER,
FOREIGN KEY(an) REFERENCES annee(an),
PRIMARY KEY(numspe, an));

Chaque spécialité est rattachée à un numéro unique “numspe”, c’est donc la clé primaire de
cette table. Il faut ensuite le nom de chaque spécialité, c’est pour cela que nous avons un
attribut “nomspe” qui n'excédera jamais 100 caractères (nous avons fait exprès de prévoir
large au cas ou il y aurait une spécialité avec un nom assez long). Il faut ensuite stocker le
régime de la spécialité (continu, alternant) et, comme dit dans la partie “cardinalité”, il y a
une composition entre Annee et Specialite, d’où la présence de “an” à la fois en clé primaire
et en clé étrangère.

CREATE TABLE semestre(
idsem INTEGER,
numsem VARCHAR(3),
numspe INTEGER,
an INTEGER,
FOREIGN KEY(numspe, an) REFERENCES specialite(numspe, an),
PRIMARY KEY(idsem));

Chaque semestre doit avoir son propre identifiant, c’est pour cela que l’on a “idsem” en clé
primaire et “numsem” en attribut. En effet, si on avait décidé de mettre le numéro de
semestre en clé primaire, nous n’aurions pas pu affilier deux spécialités différentes au même

semestre. Nous avons donc fait le choix d’identifier chaque semestre par un identifiant.
Chaque semestre est relié à une spécialité, c’est pour cela que l’on a “numspe” en clé
étrangère.

CREATE TABLE ue(
numue INTEGER,
nomue VARCHAR(100),
volue FLOAT,
idsem INTEGER,
FOREIGN KEY(idsem) REFERENCES semestre(idsem),
PRIMARY KEY(numue));

Chaque UE a un numéro lui servant d’identifiant unique. Il faut aussi stocker le volume de
chaque UE (il est ici en float car ce volume est rentré en équivalent TD, il conviendra ensuite
de l’afficher en heures effectives via une requête php). Chaque UE est reliée à des
semestres, c’est pour cela que “idsem” est placé en tant que clé étrangère.

CREATE TABLE type(
type VARCHAR(2),
nombre INTEGER,
PRIMARY KEY(type));

Il faut ensuite créer la table type qui renseigne sur le type d’un module (CM,TP,TD,CTD).
Nous avons ici un type avec deux caractères. En effet, dans notre modèle, CTD est stocké
sous ‘CT’ (il faudra donc une requête php pour afficher CTD quand CT est sélectionné).

CREATE TABLE module(
nummodule INTEGER,
nommodule VARCHAR(100),
volmodule INTEGER,
nbrgrp INTEGER,
numue INTEGER,
type VARCHAR(2),
FOREIGN KEY(numue) REFERENCES ue(numue),
FOREIGN KEY(type) REFERENCES type(type),
PRIMARY KEY(nummodule, type));

Chaque module est identifié par un “nummodule” unique placé en tant que clé primaire. On
a aussi placé “nommodule” en attribut de 100 caractères. Comme chaque module est relié à
une UE, “numue” est en clé étrangère. De même, chaque module possède un type
(CM,CTD,TP,TD), c’est donc pour cela que l’identifiant de la classe type est placé en clé
étrangère.

CREATE TABLE statut(
nom VARCHAR(100),
quota INTEGER,
PRIMARY KEY(nom));

Le nom du statut est stocké en clé primaire. Le quota horaire imposé pour chaque statut est
placé en tant qu’attribut.

CREATE TABLE enseignant(
idens INTEGER,
nomens VARCHAR(100),
prenomens VARCHAR(100),
nom VARCHAR(100),
PRIMARY KEY(idens),
FOREIGN KEY(nom) REFERENCES statut(nom));

Chaque enseignant possède un identifiant “idens” personnel unique (c’est donc la clé
primaire), un nom et un prénom qui n'excèdent pas 100 caractères (nous avons pensé aux
personnes avec de longs nom/prénom). Le nom du statut est ici placé en tant que clé
étrangère.

CREATE TABLE enseigne(
idens INTEGER,
nummodule INTEGER,
numerogroupe INTEGER,
nbheure INTEGER,
FOREIGN KEY(idens) REFERENCES enseignant(idens),
FOREIGN KEY(nummodule) REFERENCES module(nummodule),
PRIMARY KEY(idens, nummodule));

Cette table est une classe association entre enseignant et module, c’est donc pour cela
qu’elle possède “idens” et “nummodule” à la fois en clé primaire et en clé étrangère. Elle
possède “nbheure” comme attribut pour savoir combien d’heures l’enseignant a effectué
dans chaque cours.

II - Documentation technique

a) Guide d’utilisation

Voici la première page de notre site, la page d'accueil, on y trouve 3 sections :

●​ Édition : permet aux directeurs de spécialités d’affecter les différents enseignants à
un module, ajouter des enseignants et d’en supprimer.

●​ Consulter une maquette : permet à l’utilisateur de consulter la maquette d’une
spécialité.

●​ Consulter la liste des enseignants : permet à l’utilisateur de visualiser la liste de tous
les enseignants présents dans l’établissement avec quelques informations
supplémentaires et, s’il le souhaite, voir le détail du service d’un enseignant.

Cliquons sur la première section : Édition.
Lorsque l’utilisateur clique sur “Édition”, il arrive sur cette page, celle-ci permet :

●​ d’affecter un enseignant à un module
●​ d’ajouter/supprimer un enseignant de l’établissement

Cliquons sur : Affectations

L’utilisateur est alors invité à remplir les trois filtres de sélection : la spécialité voulue,
l’année et le semestre. Il clique ensuite sur “OK” (un bouton accueil permet le retour à la
page d’accueil si besoin)

Il arrive alors sur cette page sur laquelle il peut :
●​ consulter les affectations par module
●​ affecter un ou plusieurs enseignant(s) (en fonction du type de cours : CM, TP, TD,

CTD)

Il clique sur “valider” pour valider les affectations.

Si l’utilisateur souhaite maintenant ajouter un enseignant dans l'établissement, il clique sur
“ Ajouter un enseignant” sur la page d’accueil du site.

Matteo Pedico

Il arrive alors sur cette page où il est invité à remplir le prénom, le nom et le statut de cet
enseignant. Une fois fait, il clique sur “ajouter” et l’enseignant est automatiquement ajouté à
l’établissement.

De même, pour supprimer un enseignant, l’utilisateur clique sur “Supprimer un enseignant”
sur la page d’édition.

Quand l’utilisateur arrive sur la page de suppression d’enseignant, il n’a qu’à sélectionner
dans le menu déroulant l’enseignant qu’il souhaite supprimer. Cette action entraînera la
suppression de l’enseignant ainsi que toutes les données relatives à cet enseignant sur le
site.

Si l’utilisateur souhaite consulter une maquette, il sélectionne “consulter une maquette” sur
la page d'accueil

Matteo Pedico

L’utilisateur est alors invité à sélectionner la spécialité, le régime (alternant ou continu) et
l’année de la maquette qu’il souhaite consulter.

Dans l’exemple suivant, on considère que l’utilisateur a choisi GBA-continu-2025

L’utilisateur obtient alors un tableau résumant l’ensemble des Unités d’enseignement (avec
le volume horaire par Unité d’enseignement et le volume horaire total) présentes dans la
spécialité sélectionnée. Si l’utilisateur veut en savoir plus sur une unité d’enseignement et
souhaite le détail des modules composant une Unité d’enseignement, il peut cliquer sur le
nom de l’Unité d’enseignement dont il veut des détails et arrive sur cette page :

L’utilisateur voit ici l’ensemble des modules présents dans l’Unité d’enseignement
sélectionnée. Il y voit le nom des modules détaillés par type et peut y consulter le volume
horaire de chaque module/type. Par exemple, ici, il y a 30h dédiées aux cours magistraux de
Biochimie.

Enfin, si l’utilisateur souhaite consulter l’ensemble des enseignants présents dans
l’établissement, il doit cliquer sur “consulter la liste des enseignants” sur la page d'accueil du
site.

L’utilisateur voit donc l’ensemble des enseignants présents dans l’établissement. Des
informations supplémentaires sont données par enseignant comme son statut, son quota
annuel, son quota effectif (ces derniers sont donnés en équivalent TD) et son état : si
l’enseignant a fait moins d’heures que son quota il sera sous l’état “sous service” , s’il a fait
exactement le nombre d’heures qu’il devait faire il sera sous l’état “ok” (comme Sofiane
Maazi dans l’exemple), enfin s’il a fait plus d’heures que nécessaire il sera sous l’état
“Heures supp” avec le nombre d’heures qu’il a faites en plus entre parenthèses.

Si l’utilisateur souhaite avoir le détail de son service, il lui suffit simplement de cliquer sur
son nom.

Matteo Pedico

Matteo Pedico

Si l’utilisateur clique sur son nom, il arrive alors sur sa page personnelle. Il peut y consulter
différentes informations le concernant :

●​ Le rapport entre son quota horaire actuel et son quota annuel fixé par son statut
(dans l’exemple ci-dessus, M.Liétard est un enseignant et doit donc faire au moins
384h par an).

●​ Il peut consulter son service en détail : dès son entrée sur cette section du site, ce
dernier affiche toutes les spécialités dans lesquelles il intervient cette année. Il y voit
en plus le détail des différents modules, les types de cours qu’il donne et son nombre
d’heures par spécialité/module/type. Il peut bien sûr filtrer les résultats par spécialité,
semestre et type pour n’afficher que son service suivant ce qu’il souhaite consulter.

b) Schéma de l’organisation des fichiers

c) Explication des requêtes difficiles :

Dans la page nouveauprof.php, il nous fallait trouver un moyen de créer un identifiant unique
à chaque ajout d’un enseignant. Il fallait que cela soit fait en interne pour ne pas contraindre
l’utilisateur qui ajoute le nouvel enseignant à trouver un identifiant non existant. Pour cela,
on a décidé de récupérer tous les identifiants existants, de récupérer le maximum des
identifiants et d’ajouter 1 à chaque ajout de professeur. La requête pour faire cela est :

$sqlidentifiant="select max(idens) as id from enseignant";
$id=$ligneidentifiant['id']+1;

Dans la page enseignants.php, il faut sélectionner l’identité du professeur (prénom+nom),
son statut, le quota horaire qu’il doit réaliser en fonction de son statut (c’est pour cela qu’on
demande de sélectionner statut.quota). On voulait ensuite afficher l’ensemble des ces
heures effectives, c’est donc pour cela que l’on somme ses heures dans la classe enseigne
(sum(enseigne.nbheure)). On effectue ensuite un “left join” car on veut aussi récupérer les
enseignants qui n’ont pas encore fait d’heures car le but de cette page est d’afficher
l’ensemble des enseignants présents dans l’établissement donc il faut aussi afficher ceux
qui n’ont pas encore d’heures d’enseignement à leur actif. On a enfin choisi de les afficher
dans un ordre croissant d’où le “order by nom asc”. Voici la requête en question :

$sql="select enseignant.idens, enseignant.prenomens||' '||enseignant.nomens as nom,
statut.nom as nomstatut,statut.quota, sum(enseigne.nbheure) as serviceactuel from
enseignant left join statut on statut.nom=enseignant.nom left join enseigne on
enseigne.idens=enseignant.idens group by
enseignant.idens,enseignant.nomens,enseignant.prenomens,statut.quota,statut.nom order
by nom asc";

Dans la page affectations.php, Il fallait un moyen pour afficher l’enseignant dans le cas où il
est déjà affecté sur le module. S’il l’est, il faut l’afficher en valeur par défaut et ne pas
l’afficher dans le tableau déroulant. Si l’on n’y touche pas, le formulaire traitera cette
sélection comme les cas où nous avons laissé la valeur par défaut “enseignant”.

// Vérifie si pour un module et un groupe donné la valeur existe
$idens_affecte = $affectations[$mod['nummodule']][$g] ?? null;
// Si oui, on récupère son nom et prénom et on affiche en option par défaut :
if ($idens_affecte)
 {

$res_ens_nom = pg_query("SELECT prenomens || ' ' || nomens AS nom
FROM enseignant WHERE idens = $idens_affecte");

 $ens_nom = pg_fetch_result($res_ens_nom, 0, 0);
 echo "<option value='$idens_affecte' selected>$ens_nom</option>";
 }

 // Affichage des autres enseignants disponibles
 pg_result_seek($res_ens, 0);
 while($ens = pg_fetch_assoc($res_ens))
 {
 // Ne pas afficher l'enseignant déjà sélectionné
 if ($ens['idens'] != $idens_affecte)
 {
 echo "<option value='{$ens['idens']}'>{$ens['nom']}</option>";
 }

Dans la page affectations.php, dans le cas où l’on veut modifier une affectation qui existe, il
faut créer une valeur booléenne ‘exists’ qui, si vraie, supprime celle qui existe déjà. Il y a
donc une requête pour supprimer l’affectation dans la table enseigne. Une fois cela fait ou si
elle n’existe pas, on insère l’affectation.

//Création du booléen
$exists = pg_num_rows($res_check) > 0;
//Si oui
 if ($exists)
 {
//On supprime l’affectation existante
 pg_query($con, "
 DELETE from enseigne
 WHERE nummodule = $nummodule and numerogroupe = $numgroupe
 ");
 }
//On affecte la valeur dans la table enseigne en ayant récupéré le volume du module
 $res = pg_query($con, "SELECT volmodule FROM module WHERE nummodule =
$nummodule");
 $vol = pg_fetch_result($res, 0, 0);
 // Mise à jour de l'affectation
 pg_query($con, "
 insert into enseigne values($idens, $nummodule,$numgroupe, $vol)
 ");
 }

	
	
	
	
	
	
	Rapport Final
	c)​Explication des requêtes difficiles
	a) Guide d’utilisation
	b) Schéma de l’organisation des fichiers
	c) Explication des requêtes difficiles :

	

